Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Antib Ther ; 6(1): 49-58, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2212700

ABSTRACT

Background: Neutralising antibodies against SARS-CoV-2 are a vital component in the fight against COVID-19 pandemic, having the potential of both therapeutic and prophylactic applications. Bispecific antibodies (BsAbs) against SARS-CoV-2 are particularly promising, given their ability to bind simultaneously to two distinct sites of the receptor-binding domain (RBD) of the viral spike protein. Such antibodies are complex molecules associated with multi-faceted mechanisms of action that require appropriate bioassays to ensure product quality and manufacturing consistency. Methods: We developed procedures for biolayer interferometry (BLI) and a cell-based virus neutralisation assay, the focus reduction neutralisation test (FRNT). Using both assays, we tested a panel of five BsAbs against different spike variants (Ancestral, Delta and Omicron) to evaluate the use of these analytical methods in assessing binding and neutralisation activities of anti-SARS-CoV-2 therapeutics. Results: We found comparable trends between BLI-derived binding affinity and FRNT-based virus neutralisation activity. Antibodies that displayed high binding affinity against a variant were often followed by potent neutralisation at lower concentrations, whereas those with low binding affinity also demonstrated reduced neutralisation activity. Conclusion: The results support the utility of BLI and FRNT assays in measuring variant-specific binding and virus neutralisation activity of anti-SARS-CoV-2 antibodies.

2.
Drug Discov Today ; 26(10): 2214-2220, 2021 10.
Article in English | MEDLINE | ID: covidwho-1184927

ABSTRACT

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters host cells by interacting with membrane-bound angiotensin-converting enzyme 2 (ACE2), a vital element in the renin-angiotensin system (RAS), which regulates blood pressure, fluid balance, and cardiovascular functions. We herein evaluate existing evidence for the molecular alterations within the RAS pathway (e.g., ACE2 and angiotensin II) during SARS-CoV-2 infection and subsequent Coronavirus Disease 2019 (COVID-19). This includes reports regarding potential effect of RAS blockade (e.g., ACE inhibitors and angiotensin II receptor blockers) on ACE2 expression and clinical outcomes in patients with co-morbidities commonly treated with these agents. The collective evidence suggests a dual role for ACE2 in COVID-19, depending on the stage of infection and the coexisting diseases in individual patients. This information is further discussed with respect to potential therapeutic strategies targeting RAS for COVID-19 treatment.


Subject(s)
COVID-19/therapy , Renin-Angiotensin System/drug effects , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2/genetics , COVID-19/physiopathology , Humans , SARS-CoV-2 , COVID-19 Drug Treatment
3.
Drug Resist Updat ; 53: 100733, 2020 12.
Article in English | MEDLINE | ID: covidwho-915413

ABSTRACT

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represents an unprecedented challenge to global public health. At the time of this review, COVID-19 has been diagnosed in over 40 million cases and associated with 1.1 million deaths worldwide. Current management strategies for COVID-19 are largely supportive, and while there are more than 2000 interventional clinical trials registered with the U.S. National Library of Medicine (clinicaltrials.gov), results that can clarify benefits and risks of candidate therapies are only gradually becoming available. We herein describe recent advances in understanding SARS-CoV-2 pathobiology and potential therapeutic targets that are involved in viral entry into host cells, viral spread in the body, and the subsequent COVID-19 progression. We highlight two major lines of therapeutic strategies for COVID-19 treatment: 1) repurposing the existing drugs for use in COVID-19 patients, such as antiviral medications (e.g., remdesivir) and immunomodulators (e.g., dexamethasone) which were previously approved for other disease conditions, and 2) novel biological products that are designed to target specific molecules that are involved in SARS-CoV-2 viral entry, including neutralizing antibodies against the spike protein of SARS-CoV-2, such as REGN-COV2 (an antibody cocktail), as well as recombinant human soluble ACE2 protein to counteract SARS-CoV-2 binding to the transmembrane ACE2 receptor in target cells. Finally, we discuss potential drug resistance mechanisms and provide thoughts regarding clinical trial design to address the diversity in COVID-19 clinical manifestation. Of note, preventive vaccines, cell and gene therapies are not within the scope of the current review.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , Drug Development/methods , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antiviral Agents/immunology , Antiviral Agents/metabolism , COVID-19/immunology , COVID-19/metabolism , Drug Development/trends , Humans , Immunologic Factors/administration & dosage , Immunologic Factors/immunology , Immunologic Factors/metabolism , Time Factors , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL